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Critical point in a two-dimensional planar model

R. Ganguly
Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta 700 032, India

~Received 22 February 1996!

Transfer matrix formalism has been used to study the phase transition in a two-dimensional isotropic planar
model where one dimension is taken to be spatial and the second dimension is temporal. Character expansion
has been used to calculate the eigenvalues of the transfer matrix operator. This has ensured very rapid con-
vergence around the critical point. Fluxes have been generated at each lattice site of the spatial dimension by
Monte Carlo simulation. Mass gap and free energy have been found in both theoretical calculation and
computer simulation separately for different values of temperature. From the results I infer an algebraic
divergence of correlation length rather than a Kosterlitz-Thouless type. The value of critical temperature is
found to bekBTc /J50.899.@S1063-651X~97!01904-1#

PACS number~s!: 64.60.Cn, 02.70.Lq, 64.60.Fr, 63.70.1h
te
e
ir
e

lon
in
r
ls

a
sts
r.
-
th
rs
lle
ra
m
en

d
c
d
n
he
po
vo
es

t
th
as

la
ld
he
s

dis-

d
re-

ese,
he
pers
one
tis
s

l

ve
ed

rify
a
a-
al
pre-
ted
r.

nt.
hile
sion
the

ns.

ion
INTRODUCTION

In usual two-dimensional~2D! systems, at above absolu
zero temperature, long-range order is said to be abs
Peierls@1# showed that the localization of particles on the
lattice sites is destroyed by long wavelength lattice wav
Similarly, using the spin-wave theory of Bloch@2#, one finds
that the spontaneous magnetization is destroyed by
wavelength spin waves. Again, more general proofs us
Bogoliubov inequalities have shown that under very gene
conditions, long-range order is destroyed for 2D crysta
magnets, superconductors, and superfluids@3#. However,
high-temperature series expansions for 2D spin systems
certain other computer simulations suggest that there exi
phase transition even in the absence of long-range orde

Kosterlitz and Thouless@4# ~KT! studied these 2D sys
tems within a unified theoretical model and investigated
possibility of a phase transition with short-range order. Fi
they showed that it is possible to get long-range order, ca
topological order, and that there is a phase transition cha
terized by a sudden change in the response of the syste
an external perturbation. Later, they established the pres
of vortices in 2D systems@5#. They contend that the 2D
low-temperature phase is characterized by a power-law
cay in pair correlation function~as predicted by harmoni
theory! modified by the presence of pairs of tightly boun
topological defects of ‘‘opposite sign.’’ At the transitio
temperature, the pairs unbind to create a new phase w
the correlations decay exponentially. In crystals, the to
logical defects are dislocations, in magnets they are spin
tices, and in superfluid helium they are quantum vortic
The three component spin model~Heisenberg model! will
not sustain vortices because the singularity at the core of
vortex can be avoided by the core spins pointing outside
plane. Thus in this case KT predict that there is no ph
transition.

However, the two component spin model, called the p
nar ~or XY! spin model, can support vortices and shou
therefore exhibit the KT transition. In a planar model, t
low-temperature phase of the system contains massless
551063-651X/97/55~5!/4982~8!/$10.00
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waves whereas the high-temperature phase is completely
ordered. The vortices condense forT.Tc and disorder spin-
spin correlation function. Since this work of Kosterlitz an
Thouless, this problem area has been explored by many
search workers in a variety of means and ways. Out of th
I mention the results of relevant papers in Sec. IV of t
present paper. In this section, I merely mention these pa
to show the vast amount of work that has already been d
on this problem. Analytical work has been done by Mat
@6#, Migdal @7#, and Stump@8#. Series expansion method
were tried by Hameret al. @9#, Luck @10#, Hornby and Bar-
ber @11#, Alton and Hamer@12#, etc. Many computationa
methods have been used by Heys and Stump@13#, Toboch-
nik and Chester@14#, Foxet al. @15#, Janke and Nather@16#,
Gupta, Delapp, and Batrouni@17#, Biferale and Petronzio
@18#, etc. Although some of the papers on this problem ha
questioned KT-type transition, most of them have agre
firmly upon a KT transition.

The present paper is another independent attempt to ve
KT transition on the basis of the lattice model. If I use
lattice model, probably it is not driven by vortex condens
tion. I expect a different approach to calculate the critic
temperature and exponents and thus compare them with
viously existing results. In this paper we have construc
the Hamiltonian in Euclidian formulation as explained late
This was previously done in only one paper~e.g., by Hamer
et al. @9#!, but there the methodology was much differe
Here, I have used two very unique and useful methods: w
calculating mass gap, I have used the character expan
@19# method and in computing the same, I have used
Neumann-Ulam stochastic method@20#. The usefulness of
these methods has been discussed in appropriate sectio

Usually, as temperatureT approaches its critical valueTc
from above, the correlation lengthj(T) diverges as@21#

j~T!;uT2Tcu2n.

This is called algebraic divergence. But, renormalizat
group calculations by Kosterlitz@5# show
4982 © 1997 The American Physical Society
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55 4983CRITICAL POINT IN A TWO-DIMENSIONAL PLANAR MODEL
j~T!;expFbS Tc
T2Tc

D 1/2G , T.Tc1

which is called exponential divergence. Our aim in this pa
is to establish which of these two expressions is valid
T.Tc .

This paper is divided into two parts. In the first part,
have used character expansion, a perturbative method to
culate free energy and mass gap of the planar model in
based on transfer matrix formalism. This is described in S
II. In the second part, a mainframe computer~IBM 360! has
been used to create Monte Carlo simulation of the 2D lat
spin model and both free energy and mass gap have
computed. This has been described in Sec. III. Results of
computed values have been fitted by least squares meth
Sec. IV to verify the nature of the divergence of correlati
length j(T) ~which is inverse of mass gap!. In Sec. V I
compare my results with those of other relevant papers
Sec. VI a conclusion is given.

I. THE MODEL

Of the two dimensions, I take one to be spatial and
other to be temporal. The Hamiltonian of the system isO(n)
invariant~in our casen52!. We also consider nearest neig
bor interaction with interaction coupling constantJ to be
unity. The Hamiltonian can then be given by

H52(
i ,k

N

~Ŝi ,kSi21,k1Ŝi ,kŜi ,k21!

5(
i ,k

N

@cos~u i ,k2u i21,k!1cos~u i ,k2u i ,k21!#, ~1.1!

where I considered a finite lattice ofN2 sites satisfying peri-
odic boundary condition.i is the index along the spatial ax
andk is that for the temporal axis. Also, the system is dev
of any external field.

The partition function can be written as

Z5E
0

2p

)
i ,k

N

du i ,ke
2bH. ~1.2!

But Z can be written in terms of transfer matrixT as

Z; lim
N@1

Tr~ T̂N! ~1.3!

~provided the largest eigenvalue state ofT̂ is unique!.
This can be verified by considering the relation

Ĥ5 lim
e→0

S 2
\

e D lnT̂, ~1.4!

wheree5tk2tk21 andt52i t , t being the time coordinate
@10#.

We have thus analytically continued time to imagina
region, thus the Minkowsky space has shifted to Euclid
space. But, no Wick’s rotation is visible apparently in t
formalism, becauset→ i t has been done by hand and impli
itly in constructing the HamiltonianH as given by Eq.~1.1!.
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II. CALCULATIONS FOR FREE ENERGY
AND MASS GAP

The partition function appropriate for the planar model
obtained from Eqs.~1.1! and ~1.2! as

Z~b!5)
i ,k

N E
0

2p

du i ,kexp$b cos~u i ,k2u i21,k!

1b cos~u i ,k2u i ,k21!%. ~2.1!

This has a global invariance, i.e.,

u i ,k→u i ,k1f for all i and k.

Taking matrix elements in theuu& representation whereuui&’s
are mutually orthogonal, one gets

^uk8u E dz eb coszez]/]u iuuk&

5E dz eb cosz^uk8u~uk1z!&

5E dz eb coszd~uk82uk1z!

5eb cos~uk82uk!.

Let u i ,k2u i ,k215uk82uk , which represents a translatio
along the time axis. Then I write the structure of the trans
matrix from Eq.~1.3! as

T̂5)
i

N E du iFexp$b cos~u i2u i21!%E dz eb coszez]/]u i G .
~2.2!

This is diagonal inuu& representation. To work in flux repre
sentation,

un1 ,n2 ,...nM21&5E du1du2•••duM21

3expS 2 i(
j
nju j D uu1 ,u2 ,...,uM21 &,

and using the relations

E dx8E dx ea]/]x8 f ~x!5E dx8E dx f~x1a!d~x82x!,

In~b!5
1

p E
0

p

eb coszcos~nz!dz.

~In being the modified Bessel function of ordern!, I get from
Eq. ~2.2!
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4984 55R. GANGULY
T5)
i
E
0

2p

du iexpS b

2
~ei ~u i2u i21!

1e2 i ~u i2u i21!! D E dz eb coszez]/]u iuu&

5)
i
E
0

2p

du iE dz eb coszez]/]u i

3expS b

2
~L1

i L2
i111L2

i L1
i11! D uu&.

Now un&5*du e2 inuuu&.
So the above becomes

T̂5)
j
Î nj~b!)

i
expS b

2
~ L̂1

i L̂2
i111L̂2

i L̂1
i11! D un&.

~2.3!

Hereb215kBT/J, kB being the Boltzmann constant,J is the
nearest neighbor coupling constant, andT is the physical
temperature. Actually,ni is the number of fluxes at thei th
spatial site.

L̂2
j 5e2 iu j , L̂1

j 5eiu j , and L̂1
j L̂2

j 51.

L̂1 and L̂2 can be identified as the flux generating and fl
annihilating operators, respectively.

Using binomial expansion, one gets

)
i
e~b/2!~L1

i L2
i11

1L2
i L1

i11
!

5)
i

(
n50

a

(
k50

n S b

2 D n 1

~n2k!!k!
~L1

i L2
i11!n22k

5)
i

(
z52a

a

(
k50

a
~b/2!z12k

k! ~z1k!!
~L1

i L2
i11!z

5)
i

(
z52a

a

I z~b!~L1
i L2

i11!z.

So the transfer matrix in Eq.~2.3! can be written as

T̂5T̂0T̂1 , ~2.4a!

where

T̂05)
i
Î ni~b!@ I 0~b!#M ~2.4b!

~M being the number of links in the one-dimensional cha!
and

T̂15)
i

F11
I 1
I 0

~ L̂1
i L̂2

i111L̂2
i L̂1

i11!

1
I 2
I 0

@~ L̂1
i L̂2

i11!21~ L̂2
i L̂1

i11!2#1qS I 1I 0D
3G .

~2.4c!
The sort of expansion in Eq.~2.4c! is called character expan
sion @19#. This is more advantageous than the stron
coupling expansion becauseI 0 is the largest eigenvalue~i.e.,
larger thanI 1, I 2, I 3, etc.! for all values of the argument an
therefore the expansion works well even near the phase t
sition point.

I take x as the perturbative expansion parameter~whose
value will be set equal to 1 at the end! for the T1 operator
which may be taken as the perturbation operator withT0 as
the unperturbed one with eigenvalues and eigenkets as
lows:

T̂0uf i&5el iuf i& ~2.5!

~li must be calculated!.
Let

T̂uc i&5ekiuc i& ~2.6!

since q(I 1/I 0)
2;q(I 2/I 0), therefore they compile as th

second order term. Now, expansion ofT̂1 yields

T̂1511xĤ11x2Ĥ21q~x3!,

where

Ĥ15S I 1I 0D S (i ~L1
i L2

i111L2
i L1

i11! D
and

H25S I 2I 0D S ( @~L1
i L2

i11!21~L2
i L1

i11!2# D
1
1

2 S I 1I 0D
2S (

i
(
j

~L1
i L1

j L2
i11L2

j111L1
i

1L1
j11L2

j L2
i111L1

i11L1
j L2

i L2
j111L1

i11L1
j11L2

i L2
j ! D .

I also define

uc i&5uf i&1xuc i
~1!&1x2uc i

~2!&1q~x3!, ~2.7!

ki5l11xki
~1!1x2ki

~2!1q~x3!. ~2.8!

Using Rayleigh-Schro¨dinger perturbation theory, I obtain th
perturbed energy states as follows.

Plugging the series values~2.7! and ~2.8! into the eigen-
value Eq.~2.6! and taking matrix elements, I get

^f j uT̂uc i&5^f j uekiuc i&

or

^f j uT̂0T̂1uc i&5^f j ue~l i1xki
~1!

1x2ki
~2!

1••• !uc i&,

^f j uT̂0T̂1uc i&5el j^f j u@11xĤ11x2H21q~x3!#

3@ uf i&1xuc i
~1!&1x2uc i

~2!&1q~x3!],



55 4985CRITICAL POINT IN A TWO-DIMENSIONAL PLANAR MODEL
^f j uel i1xki
~1!1x2ki

~2!1•••uc i&

5el iS 11xki
~1!1x2ki

~2!1
x2

2
~ki

~1!!21q~x3! D
3@d i j1x^f j uc i

~1!&1x2^f j uc i
~2!&1q~x3!#.
ce
Of course, I can take the normalizing conditions,

^f i uc i
~k!&50 for all k.

Then, for i5 j , I have
el iF11x^f i uĤ1uf i&1x2^f i uĤ2uf i&1x2^f i uH1uc i
~1!&1q~x3!5el iS 11xki

~1!1x2ki
~2!1

x2

2
~ki

~1!!21q~x3! D
where

ki5^f1uĤ1uf i&, ~2.9!

and

ki
~2!5^f i uĤ1uc i

~1!&1^f i uĤ2uf i&2 1
2 @^f i uĤ1uf i&#2. ~2.10!

And for iÞ j , I have

el i@x^f j uc i
~1!&1x2^f j uc i

~2!&1x^f j uĤ1uf i&1x2^f j uĤ1uc i
~1!&1x2^f j uĤ2uf i&1q~x3!#

5el i@x^f j uc i
~1!&1x2^f j uc i

~2!&1x2ki
~1!^f j uc i

~1!&1q~x3!#⇒el j@^f j uĤ1uf i&1^f j uc i
~1!&#5el i^f j uc i

~1!&.
So I get

uc i
~1!&5(

j51
uf j&^f j uĤ1uf i&

1

el i2l j21
~2.11a!

and

ki
~2!5^f i uĤ2uf i&2

1

2
@^f i uĤ1uf i&u#21(

j5 i

z^f i uĤ1uf j& z2

el i2l j21
.

~2.11b!

Below I calculate the eigenvalues of different order.
The unperturbed values follow.
(i) Ground state. The ground-state eigenket ofT̂0 is

uf0&5u0,0,...&

[T̂0uf0&5@ I 0~b!#2Muf0&5el0uf0&→l052M ln@ I 0~b!#.
~2.12a!

(ii) First excited state. The eigenket is

fk85
1

AM (
r51

M

eik
W
•rWu0,0,...,1r ,0,...&,

wherek is the momentum of the ket in momentum spa
rW is the position vector of the links,

T0ufk
~1!&5@ I 0~b!#2M21I 1~b!ufk

~1!&5el1ufk
~1!&

⇒l15 ln@$I 0~b!%2M21I 1~b!#.
~2.12b!
,

Now the perturbed values follow.
(i) First order. ~a! Ground state,

k0
~1!5^f0uĤ1uf0&50. ~2.13a!

~b! First excited state,

kk:1
~1!5

1

AM
^fk

~1!uS I 1I 0D(i ~L1
i L2

i111L2
i L1

i11!

3( eik
W
•rWL1

r uf0&

52 coskS I 1I 0D . ~2.13b!

~i! Second order. ~a! Ground state,

^f0uĤ2uf0&50.

In ^f0uĤ1uf j&, the surviving matrix elements are of

uf j&5
1

AM (
r
eik

W
•~rW1rW11!u0,...,1r ,21r11,0,...&

and

uf̃ j&5
1

AM (
r
eik

W
•~r1r11!u0,...,1r ,21r11,0,...&

5
2MI 1

2

I 0
22I 1

2 S I 1I 0D
2

. ~2.14a!

~b! First excited state,
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^fk
~1!uH1ufk

~1!&52 coskS I 1I 0D ,
H1ufk50

^1& &5
1

AM S I 1I 0D F S (i ~L1
i L2

i111L2
i L1

i11! D 1(
r
L1
r G uf0&

5
1

AM S I 1I 0D S (i @~L1
i !2L2

i111L2
i21~L1

i !212L1
i21L2

i L1
i111~M23!~L1

i L2
i111L2

i L1
i11!#L1

i D * uf0&

→(
jÞ1

z^fk50
^1& uĤ1uf j& z2

el12l j21

5S I 1I 0D
2S 2 I 2

I 02I 2
14

I 1
2

I 0
22I 1

2 12~M23!
I 1
2

I 0
22I 1

2D . ~2.14b!
in
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^1&uĤ2uf k

^1&& term is calculated as

H2ufk
~1!&5

1

AM F S I 2I 0D(i @~L1
i L2

i11!21~L2
i L1

i11!2#

1
1

2S I 1I 0D
2

(
i

iÞ j

(
j

~L1
i L1

j L2
i11L2

j11

1L1
i L1

j11L2
j L2

i111L1
i11L1

j L2
i L2

j11

1L1
i11L1

j11L2
i L2

j !G(
r
eik

W
•rWL1

r uf0&.

Some of the above matrix elements vanish. The surviv
terms are

1

AM
S I 1I 0D

2

( L1
r22eik

W
•rWuf0&

and

1

AM
S I 1I 0D

2

(
r

r

I1
r12eik

W
•rWuf0&.

Hence

^fk
^1&uĤ2ufk

^1&&52 cos~2k!S I 1I 0D
2

~2.14c!

[k1
~2!5S 2 cos~2k!22 cos2k1

2I 2
I 02I 2

1
2I 1

2

I 0
22I 1

2

12~M23!
I 1
2

I 0
22I 1

2D S I 1I 0D
2

. ~2.14d!

Thus I get the difference between eigenvalues of the
excited state and the ground state as

l12l05 lnS I 1I 0D ~unperturbed!, ~2.15a!
g

st

k1
~1!2k0

~1!52 coskS I 1I 0D ~first order!, ~2.15b!

k1
~2!2k0

~2!5S 2 cos~2k!22 cos2k1
2I 2
I 02I 2

2
4I 1

2

I 0
22I 1

2D
3S I 1I 0D

2

~second order!. ~2.15c!

Hence the mass gap at zero momentum value is given b

Dk50
~b! 5k12k05 lnS I 1I 0D 12S I 1I 0D 1S I 1I 0D

2S 2I 2
I 02I 2

2
4I 1

2

I 0
22I 1

2D .
~2.16!

Since free energy is the total energy of the ground state,
given by

F5k05M F ln~ I 0!
21

2I 1
2

I 0
22I 1

2 S I 1I 0D
2G , ~2.17a!

and free energy per link is

f ~b!5
F

M
5 ln@ I 0~b!#21

2I 1
2

I 0
22I 1

2 S I 1I 0D
2

. ~2.17b!

The numerical values ofD~b! and f ~b! have been listed us
ing the above theoretical calculations in Table II in Sec.
for b50.10–1.00 and compared with independently co
puted values.

To show rapid convergence of the character expans
series given by Eq.~2.4c! and hence of the expression give
by Eq. ~2.16!, I plot a graph forD~b! considering up to first
order expansion and second order expansion separate
Fig. 1. The data for Fig. 1 have been calculated and liste
Table I.

III. METHOD OF COMPUTATION

A master program was written based on the Neuma
Ulam method@20#. This method is very efficient and devoi
of various stochastic errors when applied on the transfer
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trix formalism. The basic idea is like this: It involves a ra
dom walk in the space of basis states. At each step in
walk, one applies a projection operator to the current ba
state in some stochastic fashion. Thus it makes transition
new state or states. The number of times each basis sta
visited during the walk is proportional to its amplitude in th
ground-state wave function. This of course is multiplied
some weight function. In our problem, we apply this meth
as follows.

The transfer matrix operatorT̂ takes the linear link system
from one time slice to another.

If T̂uc i&5l i uc i& then afterL successive operations of th
T̂ operator on a general configuration state of ensemble,

FIG. 1. Data from Table I have been plotted. We clearly see
curves forD~b!1 andD~b!2 are overlapping, convincing us of con
vergence even at second order of the character expansion.

TABLE I. Hereb is the inverse temperature,D~b!0 is the zeroth
order term in Eq.~2.16! given by expression~2.15a!; D~b!1 is the
zeroth plus first order term in Eq.~2.16! given by Eq.~2.15b! in-
cluded with Eq.~2.15a! andD~b!2 is the zeroth plus first plus sec
ond order term in Eq.~2.16! given by Eq.~2.15c! included.

b D~b!0 D~b!1 D~b!2

0.1 22.996 22.986 22.897
0.2 22.303 22.103 22.106
0.3 21.909 21.612 21.605
0.4 21.628 21.236 21.226
0.5 21.417 20.932 20.917
0.6 21.247 20.672 20.657
0.7 21.108 20.447 20.435
0.8 20.991 20.249 20.245
0.9 20.892 20.073 20.083
1.0 20.807 10.086 20.052
e
is
a
is

et

T̂Luf&5(
i
Ci~l i !

Luc i&. ~3.1!

I can justly assume that maxli5l0; then ifC0Þ0 and the
ground state is nondegenerate, I eventually get

T̂Luf& ——→
L@1

C0~l0!
Luc0&. ~3.2!

This means that ifuf& is such a wave function of the
ensemble in which the total flux~summing over all the lattice
sites! is zero, then after a large number of passes, I w
arrive at the true ground state of the system.

But, if I start with an ensemble wave functionuf̂& which
has altogether one unit of flux, thus making it orthogonal
the ground state, then eventually, after a large numbe
passes, I shall reach the first excited state, i.e.,

T̂uf̂& ——→
L@1

C1~l1!
Luc1&. ~3.3!

The matrix elements ofT̂ can be written as

Tn8n→
Tn8n

(n8,nTn8n
Rn5Pn8nRn , ~3.4!

where Pn8n can be regarded as the probability of rando
walk from staten to n8 andRn is the residue or score~which
has previously been regarded as some kind of weight fu
tion!.

Of course,(n,n8Pnn851.
Thus the general algorithm can be briefly stated below

~1! Start out with an ensemble of states.
~2! Update them with probabilitiesPn8n by simulating ran-

dom numbers and register the scoreRn for each element
in the ensemble.

~3! RegardRn as the weight of the corresponding element
the ensemble.

~4! Making an integer out ofRn8 statistically branch out the
corresponding state that many times.

~5! Since, due to branching out, the size of the ensem
changes, one has to ‘‘renormalize’’ the states after e
pass.

IV. RESULTS

In Table II I have furnished the theoretically calculate
values of mass gap@M ~b!th# and free energy per link
@f ~b!#th . I have also given computed values of mass g
[M (b)c] and free energy per link [f (b)c]. M ~b!th is ob-
tained from Eq. ~2.16! and f ~b!th is obtained from Eq.
~2.17b!.

One can see from Table II that bothM ~b!th andM (b)c
tend to drop down to zero forb;1.0. Also, the values are
comparable to one another although those for free ene
tally much better than the mass gap. This difference can
attributed to the calculation of free energy in the first excit
state. There, some computational error might have crep
The computed values also show that as the transition poi
approached, the fluctuation in the values increases sig
cantly. This is because near the transition point correlat
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between different lattice sites increases and more and m
vortex-antivortex pairs form, thereby affecting the result.

Taking the data ofM ~b!th and M (b)c from Table I, I
have plotted them in a graph to see what is the critical va
of b, i.e., for which value ofb, they become zero. It is foun
that both can be extrapolated to the value ofbc51.112. Tak-
ing this value ofbc as a constant parameter, I have fitted t
following two functions by least squares method to find oth
parameters of the function.

~a! For Kosterlitz-Thouless expression,

M1~b!5C expS 2
B

Aubc2bu
D . ~4.1!

~b! For algebraic divergence expression,

M2~b!5Aubc2bun. ~4.2!

It is found that from Eq.~4.1!

bc51.112,

C5210.496,

B51.858,

and from Eq.~4.2!

bc51.112,

A522.102,

n51.674.

A full graph has been plotted withM ~b!th , M (b)c , M1~b!,
andM2~b! versusb for 0.1<b<1.0 in Fig. 2. This graph
clearly shows a much better fit of Eq.~4.2! in the algebraic
divergence rather than the Kosterlitz-Thouless type.

TABLE II. b is the inverse temperature. In the computati
part, the statistics that have been used are number of spatial
equals 50, number of ensembles equals 1000, and number of
iterations~i.e., passes! equals 200.

b

Calculated value Computed value

Mass gap
M ~b!th

Free energy
per link
f ~b!th

Mass gap
M (b)c

Free energy
per link
f (b)c

0.1 22.897 0.005 01 2.888~6! 0.004 89 ~3!

0.2 22.106 0.020 1 22.090 ~10! 0.020 1 ~1!

0.3 21.605 0.045 7 21.592 ~12! 0.045 1 ~2!

0.4 21.226 0.082 3 21.222 ~4! 0.081 9 ~3!

0.5 20.917 0.130 20.926 ~5! 0.128 ~1!

0.6 20.657 0.191 20.635 ~18! 0.186 ~1!

0.7 20.435 0.264 20.361 ~42! 0.256 ~2!

0.8 20.245 0.352 20.165 ~43! 0.336 ~1!

0.9 20.083 0.454 20.192 ~95! 0.444 ~1!

1.0 20.052 0.571 20.096 ~30! 0.573 ~1!
re

e

e
r

V. DISCUSSION OF RESULTS

In my work, I find that towards the high-temperature sid
the divergence of correlation follows an algebraic express
which contradicts the Kosterlitz-Thouless prediction. T
value ofn has been obtained to be 1.674, which is far fro
the classical value of12. The value of critical temperature ha
been obtained to bekBTc/J50.899.

Much work has been done in the computation of the p
nar model. Tobochnik and Chester@14# have used Metropo-
lis Monte Carlo techniques to verify KT type transition
They have obtained the value of critical temperatu
kBTc/J50.89. Shugardet al. @22#, using a simulation of the
roughening model which maps onto the planar model, fi
kBTc/J50.90. McMillan @23# finds kBTc/J50.9060.02 in
his simulation of a 1024 spin lattice.

Of the more recent results we have observed, Janke
Nather@16# have employed the 2D isotropic planar model
justify KT transition. They have used Villain’s formulatio
of the Monte Carlo simulation to conclude an exponen
divergence of KT transition with x2 estimate of
kBTc/J.0.75260.005. A heavy computational load of wor
in this field has been due to Gupta, Delapp, and Batro
@17# which again confirms a KT type transition and not
power-law divergence in the planar model. Their result
kBTc/J;0.89860.002. In 1989, one paper by Biferale an
Petronzio@18# used real space renormalization group co
putation to support again the KT type transition and the
tained value ofkBTc/J;0.89960.002.

Only one work so far by Seileret al. @25# has challenged
the KT type exponential divergence and has produced res
in support of algebraic divergence of correlation leng
They have used a high precision numerical study of
Z~10! clock model which is a discrete version of the 2
planar spin model. Their value ofkBTc/J;0.990~10! for al-
gebraic divergence andkBTc/J;0.746 for exponential diver-
gence with a much higherx2 degree of freedom.

VI. CONCLUSION

I have used an independent approach in both theore
calculation and the computation of the mass gap. In calc

FIG. 2. Proximity of fitted curves to the computed curv
M (b)c . HereM ~b!th is the calculated curve;M2~b! is the algebraic
divergence fit andM1~b! is the KT type exponential fit to the ob
served data points. ObviouslyM2~b! is much better fit toM (b)c
thanM1~b!.
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tion, character expansion yielded more advantage over
usual strong-coupling expansion, as has been pointed
earlier. In computation, the Ulam-Neumann stochas
method has been employed which certainly is efficient as
close proximity between calculation and computed val
show. But my results contradict most of the previous work
this area regarding the nature of divergence of the correla
length towards the high-temperature side of the critical po
Of course my results have obtained support from one s
dard paper, e.g., Seileret al. @24#. The value of critical tem-
H

he
ut
c
e
s

n
t.
n-

perature though has been close to that of almost all th
works. Whatever errors that have crept in in the value
critical temperature and the value ofn are because of insuf
ficient computational accuracy.
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