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Critical point in a two-dimensional planar model
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Transfer matrix formalism has been used to study the phase transition in a two-dimensional isotropic planar
model where one dimension is taken to be spatial and the second dimension is temporal. Character expansion
has been used to calculate the eigenvalues of the transfer matrix operator. This has ensured very rapid con-
vergence around the critical point. Fluxes have been generated at each lattice site of the spatial dimension by
Monte Carlo simulation. Mass gap and free energy have been found in both theoretical calculation and
computer simulation separately for different values of temperature. From the results | infer an algebraic
divergence of correlation length rather than a Kosterlitz-Thouless type. The value of critical temperature is
found to bekgT./J=0.899.[S1063-651X%97)01904-1

PACS numbgs): 64.60.Cn, 02.70.Lq, 64.60.Fr, 63.#h

INTRODUCTION waves whereas the high-temperature phase is completely dis-
ordered. The vortices condense for T, and disorder spin-

In usual two-dimensiongPD) systems, at above absolute spin correlation function. Since this work of Kosterlitz and
zero temperature, long-range order is said to be absenfhouless, this problem area has been explored by many re-
Peierls[1] showed that the localization of particles on their Search workers in a variety of means and ways. Out of these,
lattice sites is destroyed by long wavelength lattice waves! mention the results of relevant papers in Sec. IV of the
Similarly, using the spin-wave theory of Blo¢B], one finds ~ Present paper. In this section, | merely mention these papers
that the spontaneous magnetization is destroyed by lonfp show the vast amount of work that has already been done
wavelength spin waves. Again, more general proofs usin@n this problem. Analytical work has been done by Mattis
Bogoliubov inequalities have shown that under very general6], Migdal [7], and Stump[8]. Series expansion methods
conditions, long-range order is destroyed for 2D crystalswere tried by Hameet al. [9], Luck [10], Hornby and Bar-
magnets, superconductors, and superfliids However, ber[11], Alton and Hamer{12], etc. Many computational
high-temperature series expansions for 2D spin systems arfethods have been used by Heys and St{ib3) Toboch-
certain other computer simulations suggest that there existstdk and Chestef14], Fox et al.[15], Janke and Nath¢a.6],
phase transition even in the absence of long-range order. Gupta, Delapp, and BatrounlL7], Biferale and Petronzio

Kosterlitz and Thoules$4] (KT) studied these 2D sys- [18], etc. Although some of the papers on this problem have
tems within a unified theoretical model and investigated thejuestioned KT-type transition, most of them have agreed
possibility of a phase transition with short-range order. Firstfirmly upon a KT transition.
they showed that it is possible to get long-range order, called The present paper is another independent attempt to verify
topological order, and that there is a phase transition charadT transition on the basis of the lattice model. If | use a
terized by a sudden change in the response of the system lgitice model, probably it is not driven by vortex condensa-
an external perturbation. Later, they established the presen&@n. | expect a different approach to calculate the critical
of vortices in 2D system$5]. They contend that the 2D temperature and exponents and thus compare them with pre-
low-temperature phase is characterized by a power-law desdously existing results. In this paper we have constructed
cay in pair correlation functiofas predicted by harmonic the Hamiltonian in Euclidian formulation as explained later.
theory modified by the presence of pairs of tightly bound This was previously done in only one pagerg., by Hamer
topological defects of “opposite sign.” At the transition €t al. [9]), but there the methodology was much different.
temperature, the pairs unbind to create a new phase whetéere, I have used two very unique and useful methods: while
the correlations decay exponentially. In crystals, the topocalculating mass gap, | have used the character expansion
logical defects are dislocations, in magnets they are spin vof19] method and in computing the same, | have used the
tices, and in superfluid helium they are quantum vorticesNeumann-Ulam stochastic meth¢@0]. The usefulness of
The three component spin modgfieisenberg modglwill these methods has been discussed in appropriate sections.
not sustain vortices because the singularity at the core of the Usually, as temperatur€ approaches its critical valug,
vortex can be avoided by the core spins pointing outside th&0m above, the correlation leng#{T) diverges ag21]
plane. Thus in this case KT predict that there is no phase
transition. T T |-v

However, the two component spin model, called the pla- 6D~ [T=Td ™"
nar (or XY) spin model, can support vortices and should
therefore exhibit the KT transition. In a planar model, theThis is called algebraic divergence. But, renormalization
low-temperature phase of the system contains massless sginoup calculations by Kosterlit®] show

1063-651X/97/585)/49828)/$10.00 55 4982 © 1997 The American Physical Society



55 CRITICAL POINT IN A TWO-DIMENSIONAL PLANAR MODEL 4983
12 Il. CALCULATIONS FOR FREE ENERGY
, TI>T.+ AND MASS GAP

o

T b T
§(T)~ex T,
_ . o The patrtition function appropriate for the planar model is
which is called exponential divergence. Our aim in this papegpiained from Eqs(1.1) and (1.2 as

is to establish which of these two expressions is valid for
T>T,.

N
This paper is divided into two parts. In the first part, | _ 2m _
have used character expansion, a perturbative method to cal- Z(B)= H 0 d; exp B Cos 6 = bi-1)
culate free energy and mass gap of the planar model in 2D,
based on transfer matrix formalism. This is described in Sec. + B cog 6; =0 k-1)} 2.1

II. In the second part, a mainframe computi8M 360) has

been used to create Monte Carlo simulation of the 2D latticerhis has a global invariance, i.e.,
spin model and both free energy and mass gap have been
computed. This has been described in Sec. Ill. Results of the
computed values have been fitted by least squares method in
Sec. IV to verify the nature of the divergence of correlation
length &T) (which is inverse of mass gapln Sec. V |  Taking matrix elements in thg) representation whei@)'s
compare my results with those of other relevant papers. lmre mutually orthogonal, one gets

Sec. VI a conclusion is given.

Oix— i xt¢ for all i and k.

. THE MODEL <9k’|f dg ef codeld/7i| g,

Of the two dimensions, | take one to be spatial and the
other to be temporal. The Hamiltonian of the syster®{®) zf d¢ eP %00+ 0))
invariant(in our casen=2). We also consider nearest neigh-
bor interaction with interaction coupling constahtto be -
unity. The Hamiltonian can then be given by :f dZ ef ©5( 0 — O+ &)

— eﬂ cog le - Hk) .

N
H= =2 (S48 -1t SuSi-1)
N Let 6; «— 6, x—1= O — O, which represents a translation

_ ., . along the time axis. Then | write the structure of the transfer
=2 [co8 0y O Feos by bl (LD oo e (19 as

where | considered a finite lattice bF sites satisfying peri- N

odic boundary conditiori. is the index along the spatial axis T— H f dé,| exp( 8 cog 6,— 9i71)}j ds ef cosgega/aai}_

andk is that for the temporal axis. Also, the system is devoid [

of any external field. (2.2
The patrtition function can be written as

This is diagonal iné) representation. To work in flux repre-

N
2 H
7= H dei’keiﬁH. (12) sentation,
0 ik
But Z can be written in terms of transfer matixas |n1,n2,...nM,1)=f d6.d6, - dby 1
Z~1lim Tr(TV) (1.3
N>1 XeX[{—i; nj01)|61,62,...,0M1>,
(provided the largest eigenvalue stateTols unique.
This can be verified by considering the relation and using the relations
-~ AT
H=Ilim| ——|InT, (1.4 ,
e—0\ € f dx’f dx e f(x)=J dx’f dx f(x+a)d(x'—x),

wheree=7,— 7,_; and 7=—it, t being the time coordinate
We have thus analytically continued time to imaginary In(,8)=;j ef ©%cogny)d{.

region, thus the Minkowsky space has shifted to Euclidian 0

space. But, no Wick’s rotation is visible apparently in the

formalism, because—i = has been done by hand and implic- (In being the modified Bessel function of order, | get from
itly in constructing the Hamiltonial as given by Eq(1.1). Eq. (2.2
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T= HJ d0exr{ (el(ti=bi-1)
+e_i(0i_‘9i1)))fdé’ eBCOSﬁe§ﬁ/ﬁ0i|g>
2w
:H f dalf dg eB COS{e{&/[f@i
i Jo

Xexp(g (L L+ L‘L‘fl)>|e>.

Now [n)=fd@# e " 6).
So the above becomes

%zl'_[i H exp( (L L4 L'jl))|n>
]
(2.3

Here 8 1=kgT/J, kg being the Boltzmann constarik;is the
nearest neighbor coupling constant, ahds the physical
temperature. Actuallyn; is the number of fluxes at thigh
spatial site.

Ll =e %, Ll=¢€% and L,L =1.

I:+ andL_ can be identified as the flux generating and flux

annihilating operators, respectively.
Using binomial expansion, one gets

1—[ e(,B/Z)(L I_|+1 I_i LI++1)

S : ﬁ " 1 i i+1yn—
=11 > > (5) m('—d—- hyn-2k

(B/2)§+2k

K+ KT (L L

L(B)(LL LTS,
So the transfer matrix in Eq2.3) can be written as
:I\—::I\—O:I\—ll (243

where

To=I1 (A Miom" (2.4b)

(M being the number of links in the one-dimensional chain

and

~ | A A AL
T,=11 1+|—1(L'+L'_+1+L'_L'++1)
i 0

n AL a AL |
(AR (RN R
0
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The sort of expansion in E@2.40 is called character expan-
sion [19]. This is more advantageous than the strong-
coupling expansion becausgis the largest eigenvaluge.,
larger thanl {, 1,, 15, etc) for all values of the argument and
therefore the expansion works well even near the phase tran-
sition point.

| take x as the perturbative expansion paramétenose
value will be set equal to 1 at the enfibr the T, operator
which may be taken as the perturbation operator Wijlas
the unperturbed one with eigenvalues and eigenkets as fol-
lows:

Tol iy =€) (2.9
(\; must be calculated
Let
Tl =€) gs) (2.6

since 9(1,/15)%~9(1,/1,), therefore they compile as the
second order term. Now, expansion®f yields

-A|—1:l+X|:|l+X2|q2+ 19(X3),

where

ﬁl:(%)(Z (LLL‘_+1+LLLL+1))
and
H2—<—2>(2[ L”l)2+(|_‘|_‘:1)2])

+; <|1> (Z > (UL L L

lo |
+LL+1LJLH1+L;+1LLULi+1+L;+1LJg1LiLJ‘>).

| also define

=10 +x[g)+xF g+ (%), (2.7
ki=Aq+xKkY +x%k2 + 9(x3). 2.9
Using Rayleigh-Schdinger perturbation theory, | obtain the
perturbed energy states as follows.

Plugging the series valud2.7) and (2.8) into the eigen-
value Eq.(2.6) and taking matrix elements, | get

<¢j|1—|lﬂi>:<¢j|ek‘|¢i>
or
(5| ToTal ) = (bjleMim XK o3 oy
()| ToTalth)=eN(ej|[1+xH,+x2H,+ 9(x3)]
X[l i)+ x|y +x2 Py + (3],
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<¢j|e>‘i+xki(1)+xzki(2)+...|¢i> Of course, | can take the normalizing conditions,
2
X
= M| LXK 43K + = (KY)2+ (<) (¢ilyi)=0for all k.
X8+ (i) + X3 i f?) + 9O ]. Then, fori=j, | have
M| 1+ x( i | Hy| i) + XX i Hool i) + X2 i | H 1| D) + D (x3) = e 1+xk<1>+x2k<2>+ (k(l)) +9(x%)
where
ki=<¢1||:|1|¢i>: (2.9
and
k?'= (il Hal g ™) +( il Hal ¢y = 31( b1l Hal i) 12 (2.10
And fori#j, | have
e)‘i[X<¢j|lﬂi(l>>+xz<¢>j|lﬂi(2)>+x<¢j||:|1|¢i>+xz<¢j||:|1|'ﬂi(l)>+xz<¢j||:|2|¢i>+ﬁ(XS)]
=MDl ) XA i ) 3Pk i gD+ DO 1= M by [ Hal i) +( 1 g ™) 1= €Ml i),
|
So | get Now the perturbed values follow.
(i) First order. (@) Ground state,
- 1 -
|</fi(l)>:.zl [6)(ilHil ) =7 (2113 kG = ( ol H1l o) =0. (2.133
=
(b) First excited state,
and
1
—-_ ¢(1)( )E (L LI+1+L LI+1)
. R A (]
ki’ =(i[H2| i) — [<¢|H1|¢>|] +2 N1
(2110 xS &L o)
Below | calculate the eigenvalues of different order.
The unperturbed values follow. =2 cosk( (2.139
(i) Ground state. The ground-state eigenket EBB is Lo/
|$0)=10,0,..) (i) Second order. (a) Ground state,
~ oM <¢0||:|2|¢0>:0-
~Tol o) =[10(B)1?"| o) =€"0| po)—Xo=2M In[1o(B)]. n . _
(2.123  In (pg|H1|®;), the surviving matrix elements are of
(i) First excited state. The eigenket is 1 oo
) |¢j>=WZ ek b0, . 1,-1,,1,0,..)
- 3 ¢*700....10...) and
Nr:l IS RRERE S I ]
. . ~ 1 -
wherek is the momentum of the ket in momentum space, N=— > glketrtrilyg 1 -1 . 0,...
F is the position vector of the links, ) M Z | b leale
Tol ) =[1o(B) M -1 1(B)| #2) = €M1| 4(1) 2M1% (1
=iz i) (2.14a

=N=In[{lo(BIM M 1(B)].
(2.12b

(b) First excited state,
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(A1) =2 cok{ .
0

Hal o >=\/i—(l—){<2 (LELE LU [+ 2L }Idm)

=%—('—)(2 (L)AL R LR )2+ 20 7 L+ (M= 3) (L L L LY I | (o)
Kool | )2
; e)‘l_)‘j—]_J
L\ 1, 17 17
:(I—) <2| ] +4m+2(|\/|—3) m) (2.14b
0 0 2 0 1 0 1

The (¢ {1 |H,| oY) term is calculated as
k() — Kt 2co¢<( ) (first ordey,  (2.15H
0

Hl ¢i”) = J—{( )2[ LU (LT

21, 413 )

k{2 — k<2)—(200$2k) 2co§k+ -
1 |2 |0_|1
2

11\2 o
4 jpi+1j+1
3 v
] X T (second ordet (2.159
0
AL LI

Hence the mass gap at zero momentum value is given by

<|12 21, 412
|o lo/ \lo=12 13—13)°
216

FLILIFIL L) S @R [ bg).
r

I4
AP =k —ko=1n

+2| —
[

Some of the above matrix elements vanish. The surviving

terms are Since free energy is the total energy of the ground state, it is
) given by
1 ik-r
J_—(I_> 2 L et 40 212 (1,\?
F=ko= M{ln(|o)2+ o2 (I—) } (2.17a
and 071170
TREE: and free energy per link is
1 iK-F
f(,3)— =In[1o(B8)]*+ iz i) (2.179
Hence
) The numerical values ak(B) and f(B8) have been listed us-
~ | ing the above theoretical calculations in Table Il in Sec. IV
(1) (1)y— 1 Ing
(bi’[Hal pi7) 20032k)(|0) (2.140 ¢4, 3=0.10-1.00 and compared with independently com-
puted values.
21, 2|§ To show rapid convergence of the character expansion
~k{P=| 2 cog2k)—2 cogk+ ﬁﬂL 2= series given by Eq2.49 and hence of the expression given
0 "2 o n by Eqg.(2.16), | plot a graph forA(B) considering up to first
|2 B 2 order expansion and second order expansion separately in
+2(M— 3) (2.149 Fig. 1. The data for Fig. 1 have been calculated and listed in
- I IO
Table I.
Thus | get the difference between eigenvalues of the first

excited state and the ground state as IIl. METHOD OF COMPUTATION

| A master program was written based on the Neumann-
)\1—)\o:|n(—1) (unperturbed, (2.153 Ulam _methoc{ZO]. 'I_'his method is very efficient and devoid
lo of various stochastic errors when applied on the transfer ma-
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J / kgT —
02 Q.4 06 08 1.0

T

?L|¢>=Ei CiOW) ). 3.1)

| can justly assume that max=\,; then if C,#0 and the
ground state is nondegenerate, | eventually get

Tt ) ——— Co(No)“| o) 3.2

L>1

This means that if¢) is such a wave function of the
ensemble in which the total flusumming over all the lattice
siteg is zero, then after a large number of passes, | will

a
& Legends: arrive at the true ground state of the system. .
" But, if I start with an ensemble wave functipe) which
Q—= A(p)o . . .
9 a— A(BY has altogether one unit of flux, thus making it orthogonal to
= Lok 0— a(B) the ground state, then eventually, after a large number of
2 passes, | shall reach the first excited state, i.e.,
T|¢p) —— C1(A0)"[y). (3.3
L>1
The matrix elements of can be written as
-30r T,
T, »>—" R=P, R, (3.4
nn En’,nTn’n n n'nt™n

FIG. 1. Data from Table | have been plotted. We clearly see tha\tlvhere =3
curves forA(B); and A(B), are overlapping, convincing us of con-
vergence even at second order of the character expansion.

n'n Can be regarded as the probability of random
walk from staten ton’ andR,, is the residue or scorgvhich

has previously been regarded as some kind of weight func-
tion).

Of course X, /Py =1.

Thus the general algorithm can be briefly stated below.

trix formalism. The basic idea is like this: It involves a ran-
dom walk in the space of basis states. At each step in the
walk, one applies a projection operator to the current basis
state in some stochastic fashion. Thus it makes transition to@) Start out with an ensemble of states.
new state or states. The number of times each basis state() Update them with probabilitieB,/,, by simulating ran-
visited during the walk is proportional to its amplitude in the dom numbers and register the sc&gfor each element
ground-state wave function. This of course is multiplied by  in the ensemble.
some weight function. In our problem, we apply this method(3) RegardR, as the weight of the corresponding element of
as follows. . the ensemble.

The transfer matrix operatdr takes the linear link system (4) Mmaking an integer out oR,, statistically branch out the
from one time slice to another. _ _ corresponding state that many times.

If T|¢)=\i[¢s) then afterl. successive operations of the (5) gince, due to branching out, the size of the ensemble
T operator on a general configuration state of ensemble, | get changes, one has to “renormalize” the states after each

TABLE I. Here Bis the inverse temperatura(g), is the zeroth pass.

order term in Eq(2.16) given by expressiofi2.153; A(B), is the

zeroth plus first order term in E@2.16) given by Eq.(2.15b in- IV. RESULTS

cluded with Eq.(2.159 and A(B), is the zeroth plus first plus sec- . .

ond order term in Eq(2.16 given by Eq.(2.159 included. In Table Il I have furnished the theoretically calculated
values of mass gapM(B);,] and free energy per link

8 A(B) AB), A(B), [f(B)]n. | have also given computed values of mass gap
[M(B).] and free energy per linkf[{(B).]. M(B);, is ob-

0.1 —2.996 —2.986 —2.897 tained from Eq.(2.16 and f(B)y, is obtained from Eq.

0.2 —2.303 —-2.103 —2.106 (2.178.

0.3 —1.909 —1.612 —1.605 One can see from Table Il that boM(8)y, and M (),

0.4 —1.628 —1.236 —1.226 tend to drop down to zero fg8~1.0. Also, the values are

0.5 —1.417 —-0.932 —-0.917 comparable to one another although those for free energy

0.6 —1.247 -0.672 —-0.657 tally much better than the mass gap. This difference can be

0.7 —1.108 —0.447 —0.435 attributed to the calculation of free energy in the first excited

0.8 -0.991 —0.249 —0.245 state. There, some computational error might have crept in.

0.9 ~0.892 —0.073 ~0.083 The computed values also show that as the transition point is

1.0 —0.807 +0.086 —0.052 approached, the fluctuation in the values increases signifi-

cantly. This is because near the transition point correlation
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TABLE Il. B is the inverse temperature. In the computation Ykl —
part, the statistics that have been used are number of spatial links 024 048 072 096 120
equals 50, number of ensembles equals 1000, and number of time
iterations(i.e., passesequals 200.

Calculated value Computed value
-1.0+
Mass gap Free energy  Mass gap Free energy [
M (B)n per link M(B)c per link LY o Legends:
B f(B)n f(B)c e o =Wip,
3 4 —M(B)
01  -2897  0.00501 2.8886)  0.00489(3) 220 %
0.2 —2.106 0.0201 —2.090 (100 0.0201(1)
0.3 —1.605 0.0457 —-1.592 (120 0.0451(2
0.4 -1.226 0.082 3 —1.222(4)  0.0819(3)
0.5 -0.917 0.130 —0.926 (5) 0.128 (1) -30f
0.6 —0.657 0.191 —0.635(18) 0.186 (1)
0.7 —0.435 0.264 —0.361 (420 0.256 (2) FIG. 2. Proximity of fitted curves to the computed curve
0.8 —0.245 0.352 —0.165(43) 0.336 (1) M(B). . HereM(B)y, is the calculated curve »(B) is the algebraic
0.9 —0.083 0.454 —0.192 (95  0.444 (1) divergence fit and 4(B) is the KT type exponential fit to the ob-
1.0 —0.052 0571 —~0.096 (30) 0.573 (1) served data points. ObviousM(B) is much better fit toM ().

thanM(B).

. . . . V. DISCUSSION OF RESULTS
between different lattice sites increases and more and more

vortex-antivortex pairs form, thereby affecting the result. In my work, | find that towards the high-temperature side,

Taking the data oM (B)y, and M(3). from Table I, |  the divergence of correlation follows an algebraic expression
have plotted them in a graph to see what is the critical valudvhich contradicts the Kosterlitz-Thouless prediction. The
that both can be extrapolated to the valuggpf1.112. Tak- the classical value of. The value of critical temperature has
ing this value of3, as a constant parameter, | have fitted the€€n obtained to blegT:/J=0.899.

; ; . Much work has been done in the computation of the pla-
following two functions by least squares method to find other .
parameters of the function. nar model. Tobochnik and Chesfd] have used Metropo-

; : lis Monte Carlo techniques to verify KT type transition.
(8 For Kosterlitz-Thouless expression, They have obtained the value of critical temperature
kgT./J=0.89. Shugareet al. [22], using a simulation of the
M, (B)=C exp — B 4.1 roughening model which maps onto the planar model, find
1 JB—A8l) ' kgT/J=0.90. McMillan [23] finds kgT./J=0.90=0.02 in
his simulation of a 1024 spin lattice.
Of the more recent results we have observed, Janke and
Nather[16] have employed the 2D isotropic planar model to
— _plv justify KT transition. They have used Villain's formulation
Ma(B)=AlBo—Bl". (4.2 of the Monte Carlo simulation to conclude an exponential
divergence of KT transition with x> estimate of
kgT/J=0.752-0.005. A heavy computational load of work
in this field has been due to Gupta, Delapp, and Batrouni

(b) For algebraic divergence expression,

It is found that from Eq(4.1)

Bc=1.112, [17] which again confirms a KT type transition and not a
power-law divergence in the planar model. Their result is
C=-10.496, kgT./J~0.898+0.002. In 1989, one paper by Biferale and
Petronzio[18] used real space renormalization group com-
B=1.858, putation to support again the KT type transition and the ob-
tained value okgT./J~0.899+0.002.
and from Eq.(4.2 Only one work so far by Seilegt al. [25] has challenged
the KT type exponential divergence and has produced results
B:.=1.112, in support of algebraic divergence of correlation length.
They have used a high precision numerical study of the
A=—2.102, Z(10) clock model which is a discrete version of the 2D
planar spin model. Their value &§T./J~0.99010) for al-
L=1.674. gebraic divergence andg; T./J~0.746 for exponential diver-
gence with a much highey? degree of freedom.
A full graph has been plotted witM (8)y,, M(B8):, M1(B),
and M,(8) versusg for 0.1<8<1.0 in Fig. 2. This graph V1. CONCLUSION
clearly shows a much better fit of EG4.2) in the algebraic I have used an independent approach in both theoretical

divergence rather than the Kosterlitz-Thouless type. calculation and the computation of the mass gap. In calcula-
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tion, character expansion yielded more advantage over thgerature though has been close to that of almost all these
usual strong-coupling expansion, as has been pointed outorks. Whatever errors that have crept in in the value of
earlier. In computation, the Ulam-Neumann stochasticcritical temperature and the value nfare because of insuf-
method has been employed which certainly is efficient as th&écient computational accuracy.

close proximity between calculation and computed values
show. But my results contradict most of the previous work in
this area regarding the nature of divergence of the correlation
length towards the high-temperature side of the critical point. The present work was done during my stay at the Univer-
Of course my results have obtained support from one starsity of Cincinnati. | am very grateful to Dr. P. Suranyi, who
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